问题
解答题
已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求:代数式x4+x3y+x2y2+xy3+y4的值.
答案
由已知条件可知xy和(x+y)是方程t2-17t+66=0的两个实数根,由t1=6,t2=11
得
或xy=6 x+y=11 xy=11 x+y=6
当xy=11,x+y=6时,x、y是方程v2-6v+11=0的两个根
∵△1=36-44<0
∴此方程没有实数根
当xy=6,x+y=11时,x、y是方程u2-11u+6=0的两个根
∵△2=121-24>0
∴此方程有实数根,这时x2+y2=(x+y)2-2xy=109
∴x4+x3y+x2y2+xy3+y4=x4+y4+x2y2+xy(x2+y2)=(x2+y2)2-x2y2+xy(x2+y2)=12499.