问题 单项选择题

二叉树的前序遍历序列为A,B,D,C,E,P,G,中序遍历序列为D,B,C,A,F,E,G,其后序遍历序列为 (44)

A.D,C,F,G,E,B,A
B.D,C,B,P,G,E,A
C.F,G,E,D,C,B,A
D.D,C,F,G,B,E,A

答案

参考答案:B

解析:根据二叉树的前序序列和中序序列可以唯一地恢复二叉树,原则是:在前序序列中确定根结点,到中序序列中分出根结点的左、右子树。因此本题先根据前序序列和中序序列将二叉树,恢复出来,然后对二叉树进行后序遍历,即可得到后序序列,
具体由前序序列“ABDCEFG”可以确定树根结点A,在中序序列中以A为界,“DBC”是其左子树中结点,“FEG”是其右子树中结点;接下来,由前序序列确定每棵子树的根,再在中序序列中分出其左右子树中的节点……故本题选B。

单项选择题
填空题