设关于未知数x的方程x2-5x-m2+1=0的实根为α、β,试确定实数m的取值范围,使|α|+|β|≤6成立.
∵△=52+4(m2-1)=4m2+21,
∴不论m取何值,
所给的方程都有两个不相等的实根.
∵α+β=5,αβ=1-m2,|α|+|β|≤6,
∴α2+β2+2|αβ|≤36,
即(α+β)2-2αβ+2|αβ|≤36.
∴25-2(1-m2)+2|1-m2|≤36,
当1-m2≥0时,25≤36成立,
∴-1≤m≤1.(1)
当1-m2<0时,
得25-4(1-m2)≤36,
∴-
≤m≤15 2
.(2)15 2
由(1)、(2)得-
≤m≤15 2
.15 2