问题
解答题
已知数列{an}的通项公式为an=3n-1,在等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比数列.
(1)求数列{bn}的通项公式;
(2)求数列{an·bn}的前n项和Tn.
答案
(1)bn=2n+1(2)Tn=n·3n.
(1)∵an=3n-1(n∈N*),∴a1=1,a2=3,a3=9,在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5,又a1+b1,a2+b2,a3+b3成等比数列.
设等差数列{bn}的公差为d.
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
∵bn>0(n∈N*),∴舍去d=-10,取d=2,
∴b1=3,∴bn=2n+1.
(2)由(1)知,Tn=3×1+5×3+7×32+…+(2n-1)·3n-2+(2n+1)·3n-1,①
3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n,②
①-②得:-2Tn=3×1+2×3+2×32+…+2×3n-1-(2n+1)·3n=3+2(3+32+33+…+3n-1)-(2n+1)·3n=3+2×-(2n+1)·3n=3n-(2n+1)·3n=-2n·3n.∴Tn=n·3n.