问题 解答题

设{an}是公比不为1的等比数列,其前n项和为Sn,且a5a3a4成等差数列.

(1)求数列{an}的公比;

(2)证明:对任意k∈N*Sk+2SkSk+1成等差数列.

答案

(1)q=-2(2)见解析

(1)设数列{an}的公比为q(q≠0,q≠1),

a5a3a4成等差数列,得2a3a5a4

即2a1q2a1q4a1q3

a1≠0,q≠0得q2q-2=0,解得q=-2或1(舍去),所以q=-2.

(2)法一 对任意k∈N*

Sk+2Sk+1-2Sk=(Sk+2Sk)+(Sk+1Sk)

ak+1ak+2ak+1

=2ak+1ak+1·(-2)=0,

所以,对任意k∈N*Sk+2SkSk+1成等差数列.

法二:对任意k∈N*,2Sk

Sk+2Sk+1

2Sk-(Sk+2Sk+1)=

 [2(1-qk)-(2-qk+2qk+1)]= (q2q-2)=0,

因此,对任意k∈N*Sk+2SkSk+1成等差数列.

多项选择题
多项选择题