问题 解答题

已知数列{an}是等差数列,{bn}是等比数列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3

(1)求数列{an}和{bn}的通项公式;

(2)数列{cn}满足cn=anbn,求数列{cn}的前n项和Sn

答案

(1)an=6n-4     bn=2·3n-1

(2)Sn=7+(6n-7)·3n

(1)设{an}的公差为d,{bn}的公比为q,由b4=b1q3,得q3=27,从而q=3,

因此bn=b1·qn-1=2·3n-1

又a1+a2+a3=3a2=b2+b3=6+18=24,∴a2=8,

从而d=a2-a1=6,故an=a1+(n-1)·6=6n-4.

(2)cn=anbn=4·(3n-2)·3n-1

令Tn=1×30+4×31+7×32+…+(3n-5)·3n-2+(3n-2)·3n-1

3Tn=1×31+4×32+7×33+…+(3n-5)·3n-1+(3n-2)·3n

两式相减得

-2Tn=1+3×31+3×32+3×33+…+3×3n-1-(3n-2)·3n=1+3×-(3n-2)·3n=1+-(3n-2)·3n

∴Tn,故Sn=4Tn=7+(6n-7)·3n

选择题
单项选择题