问题 解答题
曲线C是点M到定点F(2,0)的距离与到直线x=3距离之比为
6
3
的轨迹.
(Ⅰ)求曲线C的方程;
(Ⅱ)设F,F'为曲线C的两个焦点,直线l过点F且与曲线C交于A,B两点,求|F'A|•|F'B|的最大值.
答案

(1)设曲线上任一点M(x,y),则由题意得:

(x-2)2+y2
|x-3|
=
6
3

化简得:曲线方程为

x2
6
+
y2
2
=1…(6分)

(2)当直线l与x轴垂直时,此时A(2,

6
3
),B(2,-
6
3
),|F′A|•|F′B|=
42+(
6
3
)
2
42+(-
6
3
)
2
=
50
3
….(10分)

当直线l的斜率存在时,设l的方程为y=k(x-2)

点A,B的坐标是方程组

x2
6
+
y2
2
=1
y=k(x-2)
的解,从而有:(3k2+1)x2-12k2x+12k2-6=0

由韦达定理:x1+x2=

12k2
3k2+1
x1x2=
12k2-6
3k2+1

又椭圆的离心率e=

6
3
,由椭圆的左焦半径公式得|F′A|•|F′B|=(
6
+
6
3
x1)(
6
+
6
3
x2)=
2
3
x1x2+2(x1+x2)+6
=
2
3
×
12k2-6
3k2+1
+2×
12k2
3k2+1
+6=
50
3
-
44
3(3k2+1)
50
3
,综上,|F'A|•|F'B|的最大值是
50
3
.…(16分)

单项选择题 A1/A2型题
多项选择题