问题 解答题
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,
( I)求椭圆C的方程;
( I I)问是否存在直线l:y=
3
2
x+t
,使直线l与椭圆C有公共点,且原点到直线l的距离为4?若存在,求出l的方程;若不存在,说明理由.
答案

(1)∵中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,

∴c=2,左焦点F′(-2,0),

∴2a=|AF|+|AF′|=

(2+2)2+32
+
(2-2)2+32
=8,

解得c=2,a=4,

又a2=b2+c2,所以b2=12,故椭圆C的方程为

x2
16
+
y2
12
=1.

(2)假设存在符合题意的直线l,设其方程为y=

3
2
x+t,

x2
16
+
y2
12
=1
y=
3
2
x+t
,得3x2+3tx+t2-12=0,

∵直线l与椭圆有公共点,∴△=(3t)2-4×3(t2-12)≥0,

解得-4

3
≤t≤4
3

∵直线OA与l的距离4=

|t|
9
4
+1
,从而t=±2
13

由于±2

13
∉[-4
3
,4
3
],

所以符合题意的直线l不存在.

单项选择题
多项选择题