问题 填空题

若椭圆两焦点为F1(-4,0),F2(4,0)点P在椭圆上,且△PF1F2的面积的最大值为12,则此椭圆的方程是______.

答案

设P点坐标为(x,y),则S△PF1 F2=

1
2
|F1F2||y|=4 |y|,

显然当|y|取最大时,三角形面积最大.因为P点在椭圆上,所以当P在y轴上,此时|y|最大,所以P点的坐标为(0,±3),所以b=3.∵a2=b2+c2,所以a=5

∴椭圆方程为

x2
25
+
y2
9
=1.

故答案为

x2
25
+
y2
9
=1

选择题
单项选择题