问题
解答题
已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),求这个动圆圆心的轨迹方程.
答案
设动圆圆为M(x,y),半径为r
那么|MC|=10-r |MA|=r
∴|MC|+|MA|=10>|AC|=8
因此点M的轨迹是以A、C为焦点,长轴长为10的椭圆.
其中a=5,c=4,b=3
其方程是:
+x2 25
=1.y2 9
已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),求这个动圆圆心的轨迹方程.
设动圆圆为M(x,y),半径为r
那么|MC|=10-r |MA|=r
∴|MC|+|MA|=10>|AC|=8
因此点M的轨迹是以A、C为焦点,长轴长为10的椭圆.
其中a=5,c=4,b=3
其方程是:
+x2 25
=1.y2 9