问题
解答题
已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(﹣1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)﹣kx,x∈[﹣2,2],记此函数的最小值为g(k),求g(k)的解析式.
答案
解:(Ⅰ)∵二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(﹣1,0).
∴c=1,,b2﹣4ac=0
解得a=1,b=2,c=1,
从而f(x)=x2+2x+1;
(Ⅱ)F(x)=x2+(2﹣k)x+1,对称轴为,图象开口向上
当即k≤﹣2时,F(x)在[﹣2,2]上单调递增,
此时函数F(x)的最小值g(k)=F(﹣2)=2k+1
当即﹣2<k≤6时,F(x)在上递减,在上递增
此时函数F(x)的最小值;
当即k>6时,F(x)在[﹣2,2]上单调递减,
此时函数F(x)的最小值g(k)=F(2)=9﹣2k;
综上,函数F(x)的最小值g(k)=.