问题
单项选择题
设三向量a,b,c满足关系式a·b=a·c,则( )。
A.必有a=0或b=c
B.必有a=b-c=0
C.当a≠0时必有b=c
D.a与(b-c)均不为0时必有a⊥(b-c)
答案
参考答案:D
解析: 因a·b=a·c且a≠0,b-c≠0,故a·b-a·c=0,即a·(b-c)=0,a⊥(b-c)。
设三向量a,b,c满足关系式a·b=a·c,则( )。
A.必有a=0或b=c
B.必有a=b-c=0
C.当a≠0时必有b=c
D.a与(b-c)均不为0时必有a⊥(b-c)
参考答案:D
解析: 因a·b=a·c且a≠0,b-c≠0,故a·b-a·c=0,即a·(b-c)=0,a⊥(b-c)。