设椭圆C:
(Ⅰ)求C的方程; (Ⅱ)求过点(3,0)的动直线被C所截线段的中点轨迹方程. |
(Ⅰ)∵椭圆C:
+x2 a2
=1(a>b>0)过点(0,4),离心率为y2 b2
,3 5
∴
,解得a=5,b=4,c=3,
=c a 3 5
=116 b2 a2=b2+c2
∴椭圆C的方程是
+x2 25
=1.y2 16
(Ⅱ)设过点(3,0)的直线交椭圆
+x2 25
=1于A(x1,y1),B(x2,y2),y2 16
设AB的中点为M(x,y),则x1+x2=2x,y1+y2=2y,
把A(x1,y1),B(x2,y2)代入椭圆16x2+25y2=400,
得16x12+25y12=400,① 16x22+25y22=400,②
①-②,得16(x1+x2)(x1-x2)+25(y1+y2)(y1-y2)=0,
∴32x(x1-x2)+50y(y1-y2)=0,
∴直线AB的斜率k=
=-y1-y2 x1-x2
,16x 25y
∵直线AB过点(3,0),M(x,y),
∴直线AB的斜率k=
,y x-3
∴-
=16x 25y
,整理,得16x2+25y2-48x=0.y x-3
当k不存在时,16x2+25y2-48x=0也成立.
故过点(3,0)的动直线被C所截线段的中点轨迹方程是16x2+25y2-48x=0.