问题 解答题
已知x1,x2是方程x2-2x-2=0的两实数根,不解方程求下列各式的值:
(1)
2
x1
+
2
x2

(2)
1
x2
-
1
x1
答案

根据根与系数的关系得:x1+x2=2,x1•x2=-2,

(1)

2
x1
+
2
x2
=
2(x1+x2)
x1x2
=
4
-2
=-2;

(2)①当x1<x2时,

1
x1
-
1
x2

=

x2-x1
x1x2

=

(x2-x1)2
-2

=

x21
+
x22
-2x1x2
-2

=

(x1+x2)2-4x1x2
-2

=

22-4×(-2)
-2

=-

3

②当x1>x2时,

1
x1
-
1
x2

=

x2-x1
x1x2

=-

(x2-x1)2
-2

=-

x21
+
x22
-2x1x2
-2

=-

(x1+x2)2-4x1x2
-2

=-

22-4×(-2)
-2

=

3

问答题 简答题
判断题