问题 解答题
已知椭圆C的中心在原点,长轴的一个顶点坐标为(2,0),离心率为
3
2

(1)求椭圆C的标准方程;
(2)设F1,F2为椭圆C的焦点,P为椭圆上一点,且PF1⊥PF2,求△PF1F2的面积.
答案

(1)设椭圆C的方程为

x2
a2
+
y2
b2
=1(a>b>0),由已知a=2,
c
a
=
3
2

所以,a=2,c=

3
,b=1,椭圆C的方程为
x2
4
+y2=1

(2)设P(x1,y1),由已知PF1⊥PF2,所以

PF1
PF2
=0,

(-

3
-x1,-y1)•(
3
-x1,-y1)=0,x12+y12=3,

又因为

x21
4
+
y21
=1

解得y1

3
3
,所以,△PF1F2的面积S=
1
2
×2c•|y1|=1

问答题 简答题
单项选择题