问题 解答题
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦点分别为F1和F2,过F2的直线L与椭圆C相交 A,B于两点,且直线L的倾斜角为60°,点F1到直线L的距离为2
3

(1)求椭圆C的焦距.
(2)如果
AF 2
=2
F2B
,求椭圆C的方程.
答案

(1)设焦距为2c,由已知可得F1到直线l的距离

3
c=2
3
,故c=2.

所以椭圆C的焦距为4.

(2)设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0,直线l的方程为y=

3
(x-2).

联立

y= 
3
(x-2)
x2
a2
+
y2
b2
=1
得(3a2+b2)y2+4
3
b2y-3b4=0.

解得y1=

-
3
b2(2+2a)
3a2+b2
,y2=
-
3
b2(2-2a)
3a2+b2

因为

AF 2
=2
F2B
,所以-y1=2y2

-
3
b2(2+2a)
3a2+b2
=2•
-
3
b2(2-2a)
3a2+b2

得a=3.而a2-b2=4,所以b=

5

故椭圆C的方程为

x2
9
+
y2
5
=1.

单项选择题
单项选择题