问题 解答题
已知椭圆M:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率为
3
2
,短轴的长为2.
(1)求椭圆M的标准方程
(2)若经过点(0,2)的直线l与椭圆M交于P,Q两点,满足
OP
OQ
=0
,求l的方程.
答案

(1)由e=

c
a
=
3
2
,b=1,a2=b2+c2得a=2(2分)

所以椭圆方程为

x2
4
+y2=1(4分)

(2)设P(x1,y1),Q(x2,y2)设直线l:y=kx+2(5分)

x2
4
+y2=1
y=kx+2
得(1+4k2)x2+16kx+12=0△=64k2-48>0①(7分)

x1+x2=-

16k
1+4k2
x1x2=
12
1+4k2
②∵
OP
OQ
=0

∴x1x2+(kx1+2)(kx2+2)=0(1+k2)x1x2+2k(x1+x2)+4=0③(10分)

由②③解得k=±2满足①所以l:2x-y+2=0或2x+y-2=0(12分)

单项选择题
单项选择题