问题
解答题
在△ABC中,a、b、c分别为三个内角A、B、C的对边,锐角B满足sinB=
(1)求sin2B+cos2
(2)若b=
|
答案
(Ⅰ)∵锐角B满足sinB=
,∴cosB=5 3 2 3
∵sin2B+cos2
=2sinB•cosB+A+C 2 1+cos(A+C) 2
=2sinBcosB+1-cosB 2
=2×
×5 3
+2 3
=1- 2 3 2
.8
+35 18
(Ⅱ)∵cosB=
=a2+c2-b2 2ac
,2 3
∴
ac=a2+c2-2≥2ac-24 3
∴ac≤3,当且仅当a=c=
时,ac取到最大值3
∴ac取到最大值时,cosA=
=b2+c2-a2 2bc
=b 2c
=2 2 3
.6 6
∴sinA=
=1-cos2A
=1- 1 6 30 6
∴cos(A+
)=cosAcosπ 3
-sinAsinπ 3
=π 3
×6 6
-1 2
×30 6
=3 2
-36 10 12