问题
选择题
一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为( )
A.圆
B.抛物线
C.双曲线
D.椭圆
答案
设圆锥的母线长为R,底面半径为r,
则:πR=2πr,
∴R=2r,
∴母线与高的夹角的正弦值=
=r R
,1 2
∴母线与高的夹角是30°.
由于平面α与圆锥的轴成45°>30°;
则平面α与该圆锥侧面相交的交线为椭圆.
故选D.
一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为( )
A.圆
B.抛物线
C.双曲线
D.椭圆
设圆锥的母线长为R,底面半径为r,
则:πR=2πr,
∴R=2r,
∴母线与高的夹角的正弦值=
=r R
,1 2
∴母线与高的夹角是30°.
由于平面α与圆锥的轴成45°>30°;
则平面α与该圆锥侧面相交的交线为椭圆.
故选D.