问题
选择题
在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,则∠A=( )
A.30°
B.60°
C.120°
D.150°
答案
∵a,b,c成等比数列
∴b2=ac 代入原式得a2-c2=b2-bc即a2=b2+c2-bc
根据余弦定理a2=b2+c2-2bcCosA
∴2cosA=1
cosA=1 2
∴A=60°
故选B
在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,则∠A=( )
A.30°
B.60°
C.120°
D.150°
∵a,b,c成等比数列
∴b2=ac 代入原式得a2-c2=b2-bc即a2=b2+c2-bc
根据余弦定理a2=b2+c2-2bcCosA
∴2cosA=1
cosA=1 2
∴A=60°
故选B