已知函数f(x)=x2t-2t(x2+x)+x2+2t2+1,g(x)=
(I)证明:当t<2
(Ⅱ)对于给定的闭区间[a,b],试说明存在实数k,当t>k时,g(x)在闭区间[a,b]上是减函数; (Ⅲ)证明:f(x)≥
|
(I)证明:由题设易得g(x)=e2x-t(ex-1)+x,g'(x)=2e2x-tex+1.又2ex+e-x≥2
,且t<22 2
得t<2ex+e-x,
tex<2e2x+1,即g'(x)=2e2x-tex+1>0.由此可知,g(x)在R上是增函数.
(II)因为g'(x)<0是g(x)为减函数的充分条件,所以只要找到实数k,使得t>k时g'(x)=2e2x-tex+1<0,即t>2ex+e-x在闭区间[a,b]上成立即可.因为y=2ex+e-x在闭区间[a,b]上连续,故在闭区间[a,b]上有最大值,设其为k,于是在t>k时,g'(x)<0在闭区间[a,b]上恒成立,即g(x)在闭区间[a,b]上为减函数.
(III)设F(t)=2t2-2(ex+x)t+e2x+x2+1,即F(t)=2(t-
)2+ex+x 2
(ex-x)2+11 2
易F(t)≥
(ex-x)2+1,令H(x)=ex-x,则H'(x)=ex-1,易知H'(0)=0.当x>0时,H'(0)>0;当x<0时,H'(0)<0.故当x=0时,H(x)取最小值,H(0)=1.所以1 2
(ex-x)2+1≥1 2 3 2
于是对任意的x,t,都有F(t)≥
,即f(x)≥3 2 3 2