问题 解答题
设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2-3a2=4
2
bc.
(Ⅰ)求sinA的值;
(Ⅱ)求
2sin(A+
π
4
)sin(B+C+
π
4
)
1-cos2A
的值.
答案

(Ⅰ)由余弦定理得cosA=

b2+c2-a2
2bc
=
2
2
3

0<A<π,故sinA=

1-cos2A
=
1
3

(Ⅱ)原式=

2sin(A+
π
4
)sin(π-A+
π
4
)
1-cos2A

=

2sin(A+
π
4
)sin(A-
π
4
)
2sin2A
=
2(
2
2
sinA+
2
2
cosA)(
2
2
sinA-
2
2
cosA)
2sin2A

=

sin2A-cos2A
2sin2A
=-
7
2

选择题
单项选择题