问题
解答题
设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2-3a2=4
(Ⅰ)求sinA的值; (Ⅱ)求
|
答案
(Ⅰ)由余弦定理得cosA=
=b2+c2-a2 2bc 2 2 3
又0<A<π,故sinA=
=1-cos2A 1 3
(Ⅱ)原式=2sin(A+
)sin(π-A+π 4
)π 4 1-cos2A
=
=2sin(A+
)sin(A-π 4
)π 4 2sin2A 2(
sinA+2 2
cosA)(2 2
sinA-2 2
cosA)2 2 2sin2A
=
=-sin2A-cos2A 2sin2A
.7 2