问题
填空题
在△ABC中,D为BC边上一点,BC=3BD,AD=
|
答案
用余弦定理求得
AB2=BD2+AD2-2AD•BDcos135°
AC2=CD2+AD2-2AD•CDcos45°
即 AB2=BD2+2+2BD ①AC2=CD2+2-2CD ②
又BC=3BD
所以 CD=2BD
所以 由(2)得AC2=4BD2+2-4BD(3)
因为 AC=
AB2
所以 由(3)得 2AB2=4BD2+2-4BD (4)
(4)-2(1)
BD2-4BD-1=0
求得 BD=2+5
故答案为:2+5