问题 解答题

设△ABC的三边BC=4pq,CA=3p2+q2,AB=3p2+2pq-q2,求∠B,并证∠B为∠A及∠C的等差中项.

答案

由余弦定理可得:

cosB=

AB2+BC2-CA2
2AB•BC
=
(3p2+2pq-q22+(4pq)2-(3p2+q22
2(3p2+2pq-q2)• 4pq

=

4pq(3p2+2pq-q2
8pq(3p2+2pq-q2
=
1
2

∴∠B=60°,

∵∠C-∠B=(180°-∠A-∠B)-∠B=60°-∠A

=∠B-∠A,

∴∠B是∠A与∠C的等差中项.

问答题
单项选择题