问题
选择题
定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(-a)+f(a)=0,若x,y满足不等式f(x2-2x)+f(2y-y2)≤0,则当1≤x≤4时,2x-y的最大值为( )
A.1
B.10
C.5
D.8
答案
由于任意的a∈R都有f(-a)+f(a)=0,可知函数y=f(x)为奇函数
由f(x2-2x)+f(2y-y2)≤0可得f(x2-2x)≤-f(2y-y2)
由函数为奇函数可得式f(x2-2x)≤f(-2y+y2)
∵函数y=f(x)为R上的减函数
∴x2-2x≥-2y+y2
即x2-y2-2(x-y)≥0
整理可得,(x+y-2)(x-y)≥0
作出不等式组
所表示的平面区域即可行域如图所示的△ABC(x+y-2)(x-y)≥0 1≤x≤4
令Z=2x-y,则Z表示2x-y-z=0在y轴上的截距的相反数,
由图可知,当直线经过点A(1,1)时Z最小,最小值为Z=2×1-1=1,当直线经过点C(4,-2)Z最大,最大值2×4-(-2)=10
故选B