问题
填空题
设G为△ABC的重心,a,b,c分别为角A,B,C的对边,若35a
|
答案
∵G为△ABC的重心,
∴
+GA
+GB
=0,即GC
=-GC
-GA
,GB
代入已知等式整理得:(35a-15c)
+(21b-15c)GA
=0,GB
∵
,GA
不共线,GB
∴35a-15c=0,21b-15c=0,即a=
c,b=3 7
c,5 7
设c=7t,则a=3t,b=5t,
根据余弦定理得:cos∠ABC=
=a2+c2-b2 2ac
=9t2+49t2-25t2 2×3t×7t
,11 14
∵∠ABC为三角形的内角,
∴sin∠ABC=
=1-cos2∠ABC
=1-(
)211 14
.5 3 14
故答案为:5 3 14