问题
选择题
在△ABC中,∠A=30°,D是边BC上任意一点(D与B,C不重合),且|
|
答案
作 AO⊥BC,垂足为 O,
以 BC 所在直线为 x 轴,以 OA 所在直线为 y 轴,建立直角坐标系.
设 A(0,a),B(b,0),C (c,0),D(d,0).
∵|
|2=|AB
|2+AD
•BD
,DC
∴由距离公式可得 b2+a2=d2+a2+(d-b)(c-d),
即(b-d)(b+d )=(d-b)(c-d ),
又b-d≠0,
两边除以b-d,
得 b+d=d-c,
即b=-c,
∴点B(b,0)和C(c,0)关于原点对称,
∴△ABC 为等腰三角形.
∴AB=AC,BD=CD,
∵∠A=30°,
∴∠B=90°-
×30°=75°.1 2
故选D.