问题 填空题
在△ABC中,角A,B,C所对的边分别是a,b,c,若a=4,A=
π
3
,则该三角形面积的最大值是______.
答案

∵a=4,A=

π
3
,由余弦定理可得a2=b2+c2-2bc•cosA≥2bc-bc=bc,

∴bc≤16,当且仅当 b=c时,等号成立.

∴三角形面积为

1
2
bc sinA≤8sin
π
3
=4
3

故该三角形面积的最大值是 4

3

单项选择题 B型题
单项选择题