问题 选择题
若钝角三角形ABC的三边a,b,c成等比数列,且最大边长与最小边长的比为m,则m的取值范围是(  )
A.m>2B.m>
1+
5
2
C.m≥
1+
5
2
D.0<m≤
1+
5
2
答案

由钝角三角形ABC的三边a,b,c成等比数列,可得b2=ac,设a为最小边,c为最大边,则m=

c
a
>1.

再由cosC=

a2+b2-c2
2ab
=
a2+ac-c2
2ab
<0,可得 a2+ac-c2<0,∴1+
c
a
-(
c
a
)
2
<0.

解得

c
a
1+
5
2
,或c<
1-
5
2
 (舍去),故有m=
c
a
1+
5
2

故选B.

多项选择题
单项选择题