已知函数f(x)=
(1)由f(2)=
(2)求f(1)+f(2)+f(3)+…+f(2010)+f(
(3)判断函数f(x)=
|
(1)f(x)+f(
)=(12分)1 x
f(x)+f(
)=1 x
+x2 1+x2
=1(5分)1 x2 1+ 1 x2
(2)
(8分)f(1)+f(2)+f(3)++f(2010)+f(
)+f(1 2
)++f(1 3
)1 2010 =2009+
=1 2 4019 2
(3)设0<x1<x2
(11分)f(x1)-f(x2)=
-x 21 1+ x 21
=x 22 1+ x 22
(1+x 21
)-x 22
(1+x 22
)x 21 (1+
)(1+x 21
)x 22 =
-x 21 x 22 (1+
)(1+x 21
)x 22 = (x1+x2)(x1-x2) (1+
)(1+x 21
)x 22
由0<x1<x2知x1-x2<0(12分)
所以有
<0即f(x1)-f(x2)<0(x1+x2)(x1-x2) (1+
)(1+x 21
)x 22
所以f(x1)<f(x2)
函数f(x)=
在区间(0,+∞)上为增函数(14分)x2 1+x2