问题
填空题
已知函数f (x)的定义域为R,且f(x+2)-f(x+1)+f(x)=0,f(1)=
|
答案
∵f(x+2)=f(x+1)-f(x),
∴f(x+3)=f(x+2)-f(x+1),
∴f(x+2)+f(x+3)=f(x+1)-f(x)+f(x+2)-f(x+1),
∴f(x+3)=-f(x),
则-f(x+3)=f(x),
所以f(x+6)
=f[(x+3)+3]
=-f(x+3)
=f(x)
所以周期T=6.
∵2006÷6余数是2,
所以f(2006)=f(2)=
.1 4
故答案为:
.1 4