问题
填空题
若实数x,y满足2cos2(x+y-1)=
|
答案
∵2cos2(x+y-1)=
,(x+1)2+(y-1)2-2xy x-y+1
∴2cos2(x+y-1)=x2+2x+1+y2-2y+1-2xy x-y+1
∴2cos2(x+y-1)=
,x2+y2+2x-2y-2xy+1+1 x-y+1
故2cos2(x+y-1)=
=(x-y+1)+(x-y+1)2+1 x-y+1
,1 x-y+1
由基本不等式可得(x+y+1)+
≥2,或(x-y+1)+1 x-y+1
≤-2,1 x-y+1
∴2cos2(x+y-1)≥2,由三角函数的有界性可得2cos2(x+y-1)=2,
故cos2(x+y-1)=1,即cos(x+y-1)=±1,此时x-y+1=1,即x=y
∴x+y-1=kπ,k∈Z,故x+y=2x=kπ+1,解得x=
,kπ+1 2
故xy=x•x=(
)2,当k=0时,xy的最小值kπ+1 2
,1 4
故答案为:1 4