问题 填空题
若实数x,y满足2cos2(x+y-1)=
(x+1)2+(y-1)2-2xy
x-y+1
,则xy的最小值为______.
答案

2cos2(x+y-1)=

(x+1)2+(y-1)2-2xy
x-y+1

∴2cos2(x+y-1)=

x2+2x+1+y2-2y+1-2xy
x-y+1

∴2cos2(x+y-1)=

x2+y2+2x-2y-2xy+1+1
x-y+1

故2cos2(x+y-1)=

(x-y+1)2+1
x-y+1
=(x-y+1)+
1
x-y+1

由基本不等式可得(x+y+1)+

1
x-y+1
≥2,或(x-y+1)+
1
x-y+1
≤-2,

∴2cos2(x+y-1)≥2,由三角函数的有界性可得2cos2(x+y-1)=2,

故cos2(x+y-1)=1,即cos(x+y-1)=±1,此时x-y+1=1,即x=y

∴x+y-1=kπ,k∈Z,故x+y=2x=kπ+1,解得x=

kπ+1
2

故xy=x•x=(

kπ+1
2
)2,当k=0时,xy的最小值
1
4

故答案为:

1
4

单项选择题
填空题