问题 解答题

定义在实数集上的函数f(x)是单调减函数,且满足f(x)+f(-x)=0,如果有f(1-m)+f(1-m2)<0,求m的取值范围.

答案

由f(x)+f(-x)=0,⇒f(-x)=-f(x),

得函数f(x)为奇函数,

又在R上为单调减函数

∴f(1-m)+f(1-m2)<0即f(1-m)<-f(1-m2),

∴f(1-m)<f(m2-1),

1-m>m2-1,

∴-2<m<1.

∴m的取值范围为:(-2,1).

填空题
单项选择题