问题
填空题
设过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,且AB中点为M,则点M的轨迹方程是______.
答案
由题知抛物线焦点为(1,0)
设焦点弦方程为y=k(x-1)
代入抛物线方程得所以k2x2-(2k2+4)x+k2=0
由韦达定理:
x1+x2=2k2+4 k2
所以中点M横坐标:x=
=x1+x2 2 k2+2 k2
代入直线方程,中点M纵坐标:
y=k(x-1)=
.即中点M为( 2 k
,k2+2 k2
)2 k
消参数k,得其方程为:y2=2x-2,
当线段PQ的斜率存在时,线段PQ中点为焦点F(1,0),满足此式,
故答案为:y2=2(x-1)