问题
填空题
已知函数f(x)=x2+bx+1是R上的偶函数,则实数b=______;不等式f(x-1)<x的解集为______.
答案
∵函数f(x)=x2+bx+1是R上的偶函数,
∴f(-x)=f(x)对任意实数x恒成立,
即(-x)2-bx+1=x2+bx+1对任意实数x恒成立,比较系数得b=0
∴f(x)=x2+1,可得f(x-1)=(x-1)2+1=x2-2x+2,
不等式f(x-1)<x即:x2-3x+2<0,解之得1<x<2
原不等式的解集为:{x|1<x<2}
故答案为:0,{x|1<x<2}