问题 解答题
已知α,β是方程4x2-4tx-1=0(t∈R)的两个不等实根,函数f(x)=
2x-t
x2+1
的定义域为[α,β].
(Ⅰ)求g(t)=maxf(x)-minf(x);
(Ⅱ)证明:对于ui∈(0,
π
2
)(i=1,2,3)
,若sinu1+sinu2+sinu3=1,则
1
g(tanu1)
+
1
g(tanu2)
+
1
g(tanu3)
3
4
6
答案

(Ⅰ)设α≤x1<x2≤β,则4x12-4tx1-1≤0,4x22-4tx2-1≤0,∴4(

x21
+
x22
)-4t(x1+x2)-2≤0,  ∴2x1x2-t(x1+x2)-
1
2
<0

f(x2)-f(x1)=

2x2-t
x22
+1
-
2x1-t
x21
+1
=
(x2-x1)[t(x1+x2)-2x1x2+2]
(
x22
+1)(
x21
+1)

t(x1+x2)-2x1x2+2>t(x1+x2)-2x1x2+

1
2
>0  ∴f(x2)-f(x1)>0

故f(x)在区间[α,β]上是增函数.(3分)

α+β=t, αβ=-

1
4
,∴g(t)=maxf(x)-minf(x)=f(β)-f(α)=
(β-α)[t(α+β)-2αβ+2]
α2β2+α2+β2+1
=
t2+1
(t2+
5
2
)
t2+
25
16
=
8
t2+1
(2t2+5)
16t2+25
(6分)

(Ⅱ)证:g(tanui)=

8
cosui
(
2
cos2ui
+3)
16
cos2ui
+9
=
16
cosui
+24cosui
16+9cos2ui
2
16×24
16+9cos2ui
=
16
6
16+9cos2ui
   (i=1,2,3)
(9分)∴
3

i=1
1
g(tanui)
1
16
6
3

i=1
(16+9cos2ui)=
1
16
6
(16×3+9×3-9)
3

i=1
sin2ui)
(15分)∵
3

i=1
sinui=1,且ui∈(0,
π
2
),  i=1,2,3      ∴3
3

i=1
sin2ui≥(
3

i=1
sinui)2=1
,而均值不等式与柯西不等式中,等号不能同时成立,∴
1
g(tanu1)
+
1
g(tanu2)
+
1
g(tanu3)
3
4
6
.(14分)

选择题
选择题