问题
填空题
已知△ABC的三个内角∠A,∠B,∠C所对的边分别为a,b,c,且
|
答案
∵
=-cosA cosB
,∴根据正弦定理,得a b+2c
=-cosA cosB
,sinA sinB+2sinC
即sinBcosA+2sinCcosA=-cosBcosA,
整理得-2sinCcosA=sinBcosA+cosBcosA=sin(A+B),
∵在△ABC中,sin(A+B)=sin(π-C)=sinC>0,
∴-2sinCcosA=sinC,约去sinC得cosA=-
.1 2
又∵A∈(0,π),∴A=
.2π 3
故答案为:2π 3