问题
填空题
动点P在抛物线y=x2+1上运动,则动点P和两定点A(-1,0)、B(0,-1)所成的△PAB的重心的轨迹方程是______.
答案
在三角形△ABC中,三个顶点坐标分别为:A(x1,y1),B(x2,y2),C(x3,y3)
则△ABC的重心坐标为:Q(
(x1+x2+x3),1 3
(y1+y2+y3))1 3
那么在△PAB中,设P点坐标为P(x0,y0)
设重心坐标为Q(x',y')应该有x'=
(x0-1),y'=1 3
(y0-1).1 3
解出x0,y0 得x0=3x'+1,y0=3y'+1
因为P(x0,y0 )在抛物线y=x2+1上则有 3y'+1=(3x'+1)2+1化简得y'=3x'2+2x'+1 3
即△PAB的重心的轨迹方程是:y=3x2+2x+
.1 3
即9x2-3y+6x+1=0.
故答案为:9x2-3y+6x+1=0.