问题
解答题
已知p>0,动点M到定点F(
(I)求动点M的轨迹C的方程; (Ⅱ)设A,B是轨迹C上异于原点O的两个不同点,
(Ⅲ)在轨迹C上是否存在两点P,Q关于直线m:y=k(x-
|
答案
(Ⅰ)∵动点M到定点F与到定直线x=-
的距离相等p 2
∴点M的轨迹为抛物线,轨迹C的方程为:y2=2px.(4分)
(Ⅱ)设A(x1,y1),B(x2,y2)
∵
•OA
=0OB
∴x1x2+y1y2=0
∵y12=2px1,y22=2px2
∴x1x2=4p2
∴
=S 2△AOB
|1 4
|2|OA
|2=OB
(1 4
+x 21
)(y 21
+x 22
)y 22
=
(1 4
+2px1)(x 21
+2px2)x 22
=
[(x1x2)2+2px1x2(x1+x2)+4p2x1x2]≥1 4
[(x1x2)2+2px1x2•21 4
+4p2x1x2]=16p4x1x2
∴当且仅当x1=x2=2p时取等号,△AOB面积最小值为4p2.(9分)
(Ⅲ)设P(x3,y3),Q(x4,y4)关于直线m对称,且PQ中点D(x0,y0)
∵P(x3,y3),Q(x4,y4)在轨迹C上
∴y32=2px3,y42=2px4
两式相减得:(y3-y4)(y3+y4)=2p(x3-x4)
∴y3+y4=2p
=-2pkx3-x4 y3-y4
∴y0=-pk
∵D(x0,y0)在m:y=k(x-
)(k≠0)上p 2
∴x0=-
<0,点D(x0,y0)在抛物线外p 2
∴在轨迹C上不存在两点P,Q关于直线m对称.(14分)