问题 解答题
在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2-b2=
2
3
3
acsinB

(1)求角B的大小;
(2)若b=
3
,且A∈(
π
6
π
2
)
,求a+c的取值范围.
答案

(1)在△ABC中,∵a2+c2-b2=

2
3
3
acsinB,

a2+c2-b2
2ac
=
3
3
sinB,即cosB=
3
3
sinB,

∴tanB=

3

∵0<B<π,∴B=

π
3

(2)∵b=

3

a
sinA
=
c
sinC
=
b
sinB
=
3
3
2
=2,

a+c
sinA+sinC
=2,即:a+c=2(sinA+sinC),

又∵B=

π
3
,∴A+C=
3
,设A=
π
3
+α,B=
π
3
-α,

∵0<A<

3
,∴-
π
3
<α<
π
3

1
2
<cosα≤1,

∴a+c=2(sinA+sinC)=4sin

π
3
•cosα=2
3
cosα,

3
<a+c≤2
3

单项选择题
单项选择题