问题 选择题
给定函数①y=x
1
2
,②y=log
1
2
(x+1)
,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是(  )
A.①②B.②③C.③④D.①④
答案

①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;

②中的函数是由函数y=log

1
2
x向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;

③中的函数图象是由函数y=x-1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;

④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.

故选B.

多项选择题
单项选择题 案例分析题