问题 解答题
已知动圆过定点Q(1,0),且与定直线x=-1相切.
(1)求此动圆圆心P的轨迹C的方程;
(2)若过点M(4,0)的直线l与曲线C分别相交于A,B两点,若2
AM
=
MB
,求直线l的方程.
答案

(1)由题意知,动圆圆心M的轨迹C是以定点Q(1,0)为焦点,以定直线

x=-1为准线的抛物线,其方程为:y2=4x;

(2)设直线AB的方程为:y=k(x-4)(k存在且k≠0).

联立

y=k(x-4)
y2=4x
,消去x,得ky2-4y-16k=0,

显然△>0,

设A(x1,y1),B(x2,y2),

y1+y2=

4
k
,y1y2=-16.

AM
=(4-x1,-y1),
MB
=(x2-4,y2).

又∵2

AM
=
MB
,∴-2y1=y2

联立

y1+y2=
4
k
y1y2=-16
-2y1=y2
,消去y1,y2得k2=2,解得k=±
2

∴直线l的方程为y=±

2
(x-4).

名词解释
问答题 简答题