问题 解答题
函数f(x)满足:f(3x+y)=3f(x)+f(y)对任意的x,y∈R均成立,且当x>0时,f(x)<0.
(I)求证:f(4x)=4f(x),f(3x)=3f(x);
(II)判断函数f(x)在(-∞,+∞)上的单调性并证明;
(III)若f(8)=-2,解不等式:f(log2
x-2
x2
)+12f(log24
x
)<-
1
2
答案

(I)证明:令y=x,则f(4x)=4f(x)

令x=y=0,则f(0)=0

令y=0,则f(3x)=3f(x)

(II)f(x)在(-∞,+∞)上是减函数,以下证明:

任设x1,x2∈(-∞,+∞),且x1>x2,则

f(x1)-f(x2)=f(

x1-x2
3
×3+x2)-f(x2)=3f(
x1-x2
3

∵x1-x2>0

∴f(

x1-x2
3
)<0

即f(x1)-f(x2)<0,即f(x1)<f(x2

∴f(x)在(-∞,+∞)上是减函数

(III)∵f(8)=-2

∴4f(2)=2,∴f(2)=-

1
2

12f(log2

4x
)=3f(4log2
4x
)=3f(log2x)

f(log2

x-2
x2
)+12f(log24
x
)=f(log2
x-2
x2
)+3f(log2x )

=f(log2

x-2
x2
+3log2x  )=f(log2[x(x-2)])

f(log2

x-2
x2
)+12f(log24
x
)<-
1
2
⇔f(log2[x(x-2)])<f(2)

x>0
log2[x(x-2)]>
x-2>0
2⇔
x>2
x(x-2)>4
x>1+
5

∴不等式的解集为x>1+

5

单项选择题
单项选择题