问题 解答题
设函数f(x)=log
1
2
x+1
x-1

(1)判断函数f(x)的奇偶性,并证明;
(2)证明函数f(x)在(1,+∞)上是增函数;
(3)若x∈[3,+∞)时,不等式f(x)>(
1
2
)x+m
恒成立,求实数m的取值范围.
答案

(1)函数f(x)是奇函数

x+1
x-1
>0得x>1或x<-1,又f(-x)=log
1
2
-x+1
-x-1
=-f(x)
,∴函数f(x)是奇函数

(2)不妨设u(x)=

x+1
x-1
,1<x1x2,则u(x1)-u(x2)=
2(x2-x1)
(x1-1)(x2-1)
,∵1<x1<x2,∴x1-1>0,x2-1>0,x2-x1>0,∴u(x1)-u(x2)=
2(x2-x1)
(x1-1)(x2-1)
>0
,∴u(x1)>u(x2),

f(x)=log

1
2
u(x),∴函数f(x)在(1,+∞)上是增函数;

(3)由题意,x∈[3,+∞)时,不等式f(x)>(

1
2
)x+m恒成立,等价于f(3)-(
1
2
)
3
>m
,解得m<-
9
8

选择题
单项选择题