问题
填空题
设a=
|
答案
∵a=∫ 10
dx,表示y=1-x2
在[0,1]上的积分,也得圆面积的四分之一,1-x2
∴a=
×π,1 4
∴对任意x∈R,不等式
(cos2x-m)+πcosx≥0恒成立,π 4
可得m≤cos2x+4cosx在x∈R上恒成立,cosx∈[-1,1],
求出cos2x+4cosx的最小值即可,cos2x+4cosx=(cosx+2)2-4,
∵函数开口向上,cosx∈[-1,1],
函数f(cosx)=cos2x+4cosx在[-1,1]上增函数,当cosx=-1时取得最小值,可得(-1)2+4×(-1)=-3,
∴cos2x+4cosx的最小值为-3,
∴m≤-3,
故答案为(-∞,-3];