问题 解答题
在△ABC中,BC=1,AB=2,cosB=
1
4

(1)求AC;
(2)求△ABC的面积.
答案

(1)由BC=1,AB=2,cosB=

1
4

根据余弦定理可得:AC2=AB2+BC2-2AB•BCcosB=4+1-2×2×1×

1
4
=4,

开方得:AC=2;

(2)由cosB=

1
4
,且B为三角形的内角,

可得:sinB=

1-cos2B
=
15
4
,又BC=1,AB=2,

∴S△ABC=

1
2
AB•BC•sinB=
1
2
×2×1×
15
4
=
15
4

填空题
单项选择题