问题 单项选择题

已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交A、B两点,F为C的焦点.若|FA|=2|FB|,则k=().

A.A

B.B

C.C

D.D

答案

参考答案:D

解析:

抛物线y2=8x的准线为x=-2.直线y=k(x+2)(k>0)恒过定点P(-2,0).如下图所示过点P作直线l:x=-2,过点A、B分别作直线l的垂线,垂点为M、N.

由|FA|=2|FB|得:|AM|=2|BN|.点B为AP的中点、连接OB,则

,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为

故选D.

填空题
单项选择题 A1型题