问题
解答题
△ABC中,
(1)角A; (2)
|
答案
(1)∵
=tanA-tanB tanA+tanB
=sin(A-B) sin(A+B)
,sin(A-B) sinC
又由正弦定理:
=c+b c
,sinC+sinB sinC
∴sin(A-B)=sinC+sinB⇒-2sinBcosA=sinB,
∵sinB≠0,
∴cosA=-
⇒A=1 2
;(6分)2π 3
(2)根据正弦定理得:
=b+c a
,(7分)sinB+sinC sinA
由A=
得:2π 3
=b+c a
=sinB+sin(
-B)π 3 sin 2π 3
=
cosB+3 2
sinB1 2 3 2
sinB+cosB3 3
=
sin(B+4 3
)=π 3
sin(B+2 3 3
),π 3
∵B∈(0,
),∴B+π 3
∈(π 3
,π 3
),(10分)2π 3
∴
∈(1,b+c a
].(12分)2 3 3