问题 解答题

若x,y,z满足x+y+Z=1,x2+y2+z2=2,x3+y3+z3=3,求x4+y4+z4的值.

答案

∵(x+y+z)2=x2+y2+z2+2xy+2yz+2zx,

∴xy+yz+zx=

1
2
(1-2)=-
1
2

∵x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),

∴xyz=

1
6

x4+y4+z4=(x2+y2+z22-2(x2y2+y2z2+z2x2),

∵x2y2+y2z2+z2x2=(xy+yz+zx)2-2xyz(x+y+z)=

1
4
-
1
3
=-
1
12

∴x4+y4+z4=(x2+y2+z22-2(x2y2+y2z2+z2x2)=4-2×(-

1
12
)=
25
6

单项选择题
单项选择题