问题
填空题
分别为ρ=4cosθ和ρ=-8sinθ的两个圆的圆心距为______.
答案
将极坐标方程ρ=4cosθ和ρ=-8sinθ分别化为普通方程:
ρ=4cosθ⇒ρ2=4ρcosθ⇒x2+y2=4x⇒(x-2)2+y2=4,圆心(2,0);
ρ=-8sinθ⇒ρ2=-8ρsinθ⇒x2+y2=-8y⇒x2+(y+4)2=16,圆心(0,-4);
然后就可解得两个圆的圆心距为:d=
=222+42
.5
故答案为:2
.5